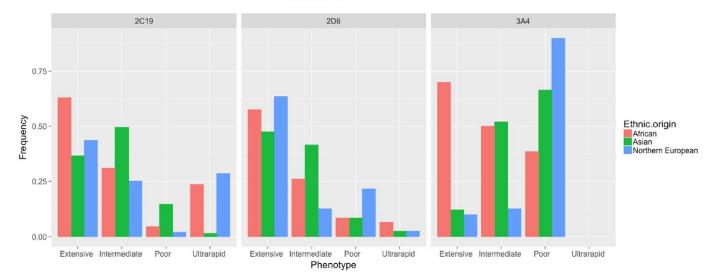

Pharmacogenomic Testing for Psychiatric Medications for Children and Adolescents <sup>Carol Ott, PharmD, BCPP</sup>

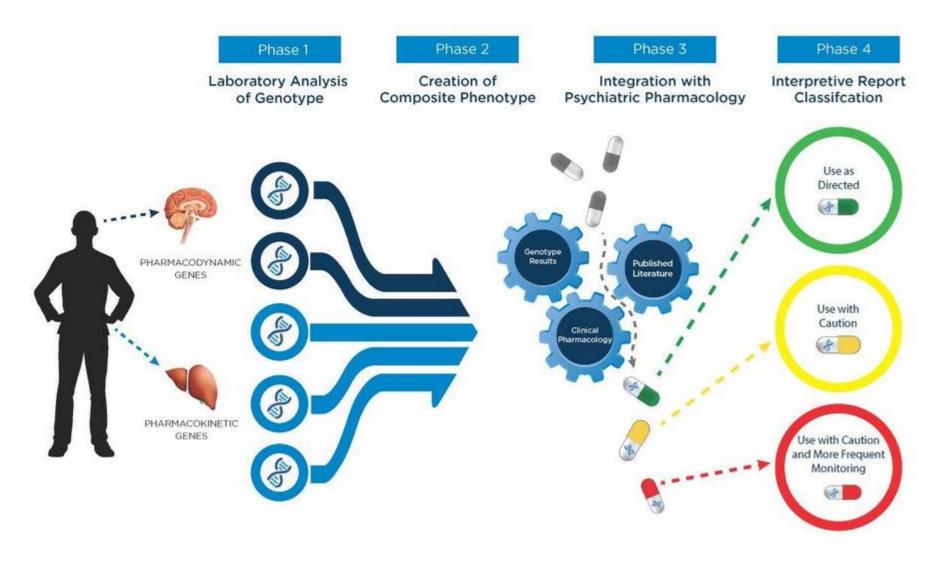
Child and Adolescent Mental Health ECHO


### The Purpose of Pharmacogenomic Testing

- Leveraging individual gene variations in medication metabolism or drug targets to predict treatment response and, potentially, guide treatment selection
- Improve the possibility that a specific medication will provide the best therapeutic benefit with the least adverse effects
- Early pharmacogenomic tests focused on CYP2D6 and CYP2C19 individually
- Newer tests use "combinatorial" strategies that rely on algorithms that evaluate genotypes for a series of genes
- Generally considered to be most useful when a patient has had significant side effects to low-moderate doses of medication or has been non-responsive to several medications

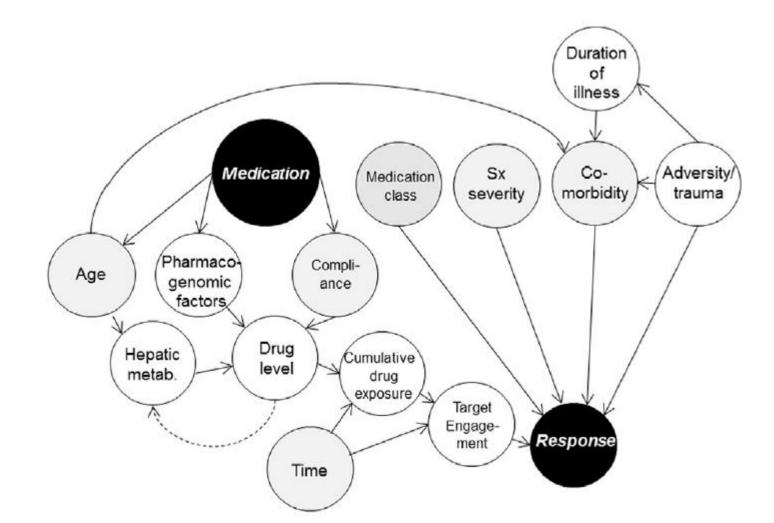
### Ethnic Variability in Select CYP450 Isoenzymes




Metabolic Phenotype



**FIG 1.** Ethnic variability in CYP450 Phenotypes. Allelic frequencies for phenotypes of 2C19, 2D6 and 3A4 vary across ethnic groups, which may inform testing. These variations are presented for the following ethnicities: (1) African, (2) Asian, and (3) Northern Europeans (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)


3

### "Combinatorial" Pharmacogenomics



4

### Pharmacogenomics is only a piece of the medication choice puzzle



5

### Guidelines are based on adult evidence base

- Most studies of SSRI pharmacogenomics are done in adults with MDD
- Translation across ages and to other disorders is not clear
- Significant differences between adult and pediatric patients in the freuncy and magnitude of side effects to these medications
- These differences may be due to the activity of drug metabolizing enzymes that change through development
- There is no current requirement for counseling before or after pharmacogenomic testing
- Patients/parents may be disappointed if they believe that this testing will definitively find the best medication or be at risk of misinterpreting results
- Pharmacogenomic testing is just one factor to consider

### GUIDED Study

- Genomics Used to Improve Depression Decisions (GUIDED)
- N = 1167 adults with MDD and an inadequate response to at least one antidepressant
- Treatment as usual (TAU) or pharmacogenomics-guided intervention
- Primary outcome symptom improvement by week 8 on the HAM-D
- Secondary outcomes response ( $\geq$  50% reduction of symptoms) or remission (score  $\leq$  7 on the HAM-D)
- Results:
  - Improvement was not better with pharmacogenomic-guided intervention vs TAU (did not meet primary outcome)
  - More patients responded or remitted when switched to the treatment guided by the pharmacogenomic intervention (did meet secondary outcome)

### FDA Safety Communication

#### October 2018

- Direct-to-consumer tests (e.g., 23andme)
- FDA permits marketing
- Tests are accurate and can correctly identify 33 genetic variants
- Approval only for adults > 18 years
- Should not change or stop any medications based on test results
- Confirm with independent testing
- Allows for FDA oversight

#### November 2018

- Safety communication
- Cautions clinicians and patients that no current test is FDA-approved
- May lack clinical evidence supporting use
- Any change in treatment based upon test results may lead to inappropriate treatment decisions and serious health consequences

## DTC vs Clinical Testing

- DTC = tests like 23andme (public domain)
- Clinical testing tests like GeneSight and GeneMind
- After FDA Safety Communication, companies that provide "combinatorial" pharmacogenomic testing, like GeneSight, put out statements that they were "clinical" testing, not DTC
- The FDA has not approved any pharmacogenomic testing, either DTC or clinical
- In August 2019, the FDA asked Myriad Genetics (GeneSight) for further data because the relationship between genetic variations and medication effects has not been established.

### Does Indiana Medicaid cover pharmacogenomic testing

- It may, under medical billing
- Prior authorization (PA) is required for all genetic testing
- Documentation required:
  - Medical necessity, specifically stating the impact on treatment
  - Genetic counseling has been performed
- The following will NOT be covered:
  - Sole convenience of information for the patient without impacting treatment
  - Medical management of family members
  - All screening tests
  - If a genetic test has been previously performed and provides a conclusive diagnosis
- Coverage is limited to once per member per lifetime

### Organization Statements on Pharmacogenomic Testing

#### • FDA:

• The FDA has not authorized any DTC pharmacogenomic tests that predict whether a person is likely to respond to or have adverse events from any specific drug

American Psychiatric Association:

- Pharmacogenetic testing is promising, but not ready for widespread use
- International Society of Psychiatric Genetics:
  - Does not endorse the use of pharmacogenomics in practice; clinicians should follow good medical practice and stay current on changes in drug labeling and adverse event reports

# Summary

- Pharmacogenomic testing holds promise, but the evidence base does not yet support clinical use for every patient
- Most studies with large enough numbers of participants and good study design have been done with adults
- Adult study results cannot be translated to child and adolescent patients due to significant differences in metabolism and receptors that may change over time
- Clinically, pharmacogenomic testing is best considered if a patient has not responded to several medications in a drug class (is considered treatment-resistant) or has significant side effects to low-moderate doses of medications that are not expected.
- Some private insurers have begun to cover pharmacogenomic testing, but prior authorization processes are required within Medicaid.

### References

- Ellingrod VL. Pharmacogenomics testing: what the FDA says. Current Psychiatry 2019;18:29-33.
- Greden JF, Parikh SV, Rothschild AJ, Thase ME, Dunlop BW, DeBattista C et al. Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: a large, patient- and rater-blinded, randomized, controlled study. J Psychiatr Res 2019;111:59-67.
- Ramsey LB, Bishop JR, Strawn JR. Pharmacogenetics of treating pediatric anxiety and depression. Pharmacogenomics 2019;20(12):867-70.
- Wehry AM, Ramsey L, Dulemba SE, Mossman SA, Strawn JR. Pharmacogenomic testing in child and adolescent psychiatry: an evidence-based review. Curr Probl Pediatr Adolesc Health Care 2018;48:40-9.